Developing the TMDL Land Use Layer Tahoe TMDL Symposium December 9, 2004

Presented by: John Riverson

Presentation Outline

- Critical role of GIS in TMDL watershed modelingGIS Layer Needs for TMDL
- Major contributions since the initial 2001 TRG attempt to consolidate
- Collective work of D-team to fill in gaps
- Current status of composite landuse layer used for TMDL
- Questions

Critical Role of GIS for TMDL

• How GIS is being used

- It's more than just creating maps
- Perform spatial analysis and prepare model inputs
- Examples of important layers include:
 - Land use/land cover
 - Hydrography
 - Weather stations

- Soils
- Topography/elevation
- Monitoring locations
- Examples of derived analysis include:
 - Subwatershed delineation
 Weather patterns
 - Land use-soil overlay
 - Degree of land disturbance
- Slope

GIS Layer Needs for TMDL

- A comprehensive map of Tahoe Basin land uses from a water quality modeling perspective
- Greater detail supporting representation of land management practices in vegetated areas (Which comprise >80% of basin)
 - Updated information on recent landuse changes

Major Contributions since 2001 TRG Consolidation Effort

• TRPA/Lake Tahoe GIS Users Group

- Ownership parcel delineation
- IKONOS Impervious layer development
- Forest Service

•

- Basin-wide roads and trails layers update
- Vegetative cover updates
- ERAs for burned and harvested lands

D-Team Involvement & Contributors

• LRWQCB

- Jack Landy
- Dave Roberts
- Tom Gavigan
- NDEP
 - Jason Kuchnicki
- Forest Service
 - Sue Norman
 - Denise Downie
 - Kurt Teuber
- DRI
 - Tim Minor

- TRPA
 - Larry Benoit
 - Sean Dougan
- CTC
 - Judy Clot
 - Dan Moses
 - Kim Carr
- UC Davis
 - John Reuter
- Tetra Tech, Inc.
 - John Riverson
 - Jeff Dorman
 - Patrick Solomon

Individual layers used to create TMDL land use layer

- 1. TRPA land parcels
- 2. Ski run delineations
- 3. Delineated campgrounds
- 4. IKONOS hard-cover impervious grid
- 5. Roads and Trails
 - Forest Service roads and trails
 - CTC roads and trails
 - Nevada State Parks roads and trails
- 6. LTBMU Harvested Forest Boundaries
- 7. LTBMU & CTC forest fire boundaries (natural and prescribed)

Final Composite Landuse **CICU-Impervious CICU-Pervious Residential MFI Residential MFP Residential SFI Residential SFP Roads** Primary **Roads** Secondary **Roads** Unpaved Ski Runs-Pervious Veg Recreational Veg Turf Veg Unimpacted Water Body

Commercial, Industrial, Communications, Utilities

Parcel Boundary vs. Actual Land Use

ECH.IN

Parcel Boundary vs. Actual Land Use

How do we best represent Roads?

Unpaved Roads & Trails

- Surface cover and width information available from LTBMU's INFRA database
- Basinwide average trail width (2 ft)
- Primary & Secondary Roads
 - Highways represented primary roads
 - IKONOS hard-cover grid generally gives best representation of secondary roads widths

1. Edit parcel boundary layer

Turn off roads rightofways

Delineate ski runs within ski area parcels

Remaining areas become Veg_Unimpacted

2. Superimpose campgrounds

3. Superimpose hard-cover layer

4. Differentiate hard-cover intersects

Distinguish primary (highways) and secondary roads grid cells
Impervious grids intersecting any urban category becomes impervious counterpart (*i.e.* Residential pervious & impervious)
Any few remaining hard-cover in vegetated lands is considered *Secondary Road*

5. Overlay unpaved roads & trails

6. Overlay harvested & burned area

7. Tabulate land use area by subbasin

Current status of composite landuse layer used for TMDL

Spatially consistent with previous land use layers

Thank you for the Tabulated SWM [landuse] areas. I am going to compare them to our old matrix -I bet there is great improvement! – Andrea Parra, UC Davis TRG The layer looks great! I was relieved to see how well this layer matched up with our... 2002. [The layer] is going to be really helpful in increasing our initial accuracy as well as speed-up the interpretation process. – Christian Raumann (USGS)

• In many areas, higher level of detail and accuracy

• Identified selected items for refinement for next phase of the TMDL

- Refine roads in selected areas

 Revisit parcel boundary vs. actual land use for other categories (*i.e.* single & multi-family residential lots)

Landuse – Bonanza Avenue

Previous Layer

Landuse – South Lake Tahoe Y

Previous Layer

Thank You

Questions?

